Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 387
Filtrar
1.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498866

RESUMO

Endocrine-disrupting chemicals (EDCs) are different natural and synthetic chemicals that may interfere with several mechanisms of the endocrine system producing adverse developmental, metabolic, reproductive, and neurological effects in both human beings and wildlife. Among pesticides, numerous chemicals have been identified as EDCs. MicroRNAs (miRNAs) can regulate gene expression, making fine adjustments in mRNA abundance and regulating proteostasis. We hypothesized that exposure to low doses of atrazine, cypermethrin, and vinclozolin may lead to effects on miRNA expression in SH-SY5Y cells. In particular, the exposure of SH-SY5Y cells to subtoxic concentrations of vinclozolin is able to downregulate miR-29b-3p expression leading to the increase in the related gene expression of ADAM12 and CDK6, which may promote a pro-oncogenic response through the activation of the PI3K/Akt/mTOR pathway and counteracting p53 activity. A better understanding of the molecular mechanisms of EDCs could provide important insight into their role in human disease.


Assuntos
Atrazina , Disruptores Endócrinos , MicroRNAs , Neuroblastoma , Oxazóis , Piretrinas , Humanos , Atrazina/toxicidade , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Neuroblastoma/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Piretrinas/toxicidade , Disruptores Endócrinos/toxicidade , Oxazóis/toxicidade
2.
Sci Rep ; 12(1): 20453, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443484

RESUMO

Etoxazole is among the systemic pesticides with acaricidal and insecticidal characteristics. This paper reports the first evaluation of the toxic effects of Etoxazole on Allium cepa L. Etoxazole solutions were applied to three groups formed from A. cepa bulbs at 0.125 mL/L, 0.25 mL/L and 0.5 mL/L doses, respectively. The control group was treated with tap water throughout the experimental period. The toxic effects of Etoxazole became more apparent as the dose of Etoxazole was increased. The growth-limiting effect was most pronounced in the highest dose group with approximately 29%, 70% and 58.5% reductions in germination percentage, root elongation and weight gain, respectively. The genotoxic effect of Etoxazole was most severe in the 0.5 mL/L dose group. In this group, the mitotic index decreased by 30% compared to the control group, while the micronucleus frequency increased to 45.3 ± 3.74. The most observed aberrations were fragment, vagrant chromosome, sticky chromosome, unequal distribution of chromatin, bridge, reverse polarization and nucleus with vacuoles. The malondialdehyde level showed a gradual increase with increasing Etoxazole doses and reached 2.7 times that of the control group in the 0.5 mL/L Etoxazole applied group. Catalase and Superoxide dismutase activities increased in the groups exposed to 0.125 mL/L and 0.25 mL/L Etoxazole with dose dependence and decreased abruptly in the group treated with 0.5 mL/L Etoxazole. Etoxazole triggered meristematic cell damages, such as epidermis cell damage, thickening of cortex cell walls, flattened cell nucleus and indistinct transmission tissue. Considering the versatile toxicity induced by Etoxazole, we announce that this chemical has the potential to cause serious damage to non-target organisms. It should be noted that the higher the dose of exposure, the more severe the level of damage. This study will be an important reminder to limit the indiscriminate use of this highly risky agrochemical.


Assuntos
Oxazóis , Estresse Oxidativo , Oxazóis/toxicidade , Medição de Risco , Malondialdeído
3.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232623

RESUMO

Endocrine-disrupting substances (EDS) are common and pervasive in our environment and pose a serious risk to both human and animal health. Endocrine-disrupting compounds (EDCs) have been associated with a variety of detrimental human health effects, including respiratory issues, as a result of their ability to disrupt cell physiology. Vinclozolin ((RS)-3-(3,5-Dichlorophenyl)-5-methyl-5-vinyloxazolidine-2,4-dione) is a common dicarboximide fungicide used to treat plant diseases. Several studies have analyzed the effects of vinclozolin exposure on the reproductive system, but less is known about its effect on other organs such as the lung. Mice were exposed for 28 days to orally administered vinclozolin at a dose of 100 mg/kg. Vinclozolin exposure induced histological alterations and collagen depositions in the lung. Additionally, vinclozolin induced inflammation and oxidative stress that led to lung apoptosis. Our study demonstrates for the first time that the toxicological effects of vinclozolin are not limited to the reproductive system but also involve other organs such as the lung.


Assuntos
Disruptores Endócrinos , Fungicidas Industriais , Animais , Disruptores Endócrinos/toxicidade , Fungicidas Industriais/toxicidade , Humanos , Pulmão/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2 , NF-kappa B , Oxazóis/toxicidade
4.
Ecotoxicol Environ Saf ; 231: 113220, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35066435

RESUMO

Many man-made chemicals that are released into water bodies in agricultural landscapes have been identified as endocrine disruptors and can cause serious impacts on the growth and survival of aquatic species living in these environments. However, very little attention has been paid to their toxicological effects in cultured non-fish species, such as aquatic turtles. We exposed hatchlings of the Chinese soft-shelled turtle (Pelodiscus sinensis) to different concentrations of vinclozolin (0, 5, 50 and 500 µg/L) for 60 days to assess physiological and metabolic impacts of this fungicide. Despite no death occurrence, hatchling turtles exposed to the highest concentration of vinclozolin consumed less food, grew more slowly (resulting in smaller body size after exposure) and performed more poorly in behavioral swimming tests than controls and turtles exposed to lower concentrations. Hepatic metabolite profiles acquired via liquid chromatography-mass spectrometry (LC-MS) revealed multiple metabolic perturbations related to amino acid, lipid, and fatty acid metabolism in animals exposed to environmentally relevant concentrations. Specifically, many critical metabolites involved in energy-related metabolic pathways (such as some intermediates in the tricarboxylic acid cycle, lactate, and some amino acids) were present in livers of hatchling turtles exposed vinclozolin, though at lower concentrations, reflecting energy metabolism dysregulation induced by exposure to this fungicide. Overall, our results suggest that the changes in growth and behavioral performances caused by chronic vinclozolin exposure may be associated with internal physiological and metabolic disorders mediated at the biochemical level.


Assuntos
Fungicidas Industriais , Tartarugas , Animais , Fungicidas Industriais/toxicidade , Fígado , Oxazóis/toxicidade
5.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445476

RESUMO

4,4'-Dimethylaminorex (4,4'-DMAR) is a new synthetic stimulant, and only a little information has been made available so far regarding its pharmaco-toxicological effects. The aim of this study was to investigate the effects of the systemic administration of both the single (±)cis (0.1-60 mg/kg) and (±)trans (30 and 60 mg/kg) stereoisomers and their co-administration (e.g., (±)cis at 1, 10 or 60 mg/kg + (±)trans at 30 mg/kg) in mice. Moreover, we investigated the effect of 4,4'-DMAR on the expression of markers of oxidative/nitrosative stress (8-OHdG, iNOS, NT and NOX2), apoptosis (Smac/DIABLO and NF-κB), and heat shock proteins (HSP27, HSP70, HSP90) in the cerebral cortex. Our study demonstrated that the (±)cis stereoisomer dose-dependently induced psychomotor agitation, sweating, salivation, hyperthermia, stimulated aggression, convulsions and death. Conversely, the (±)trans stereoisomer was ineffective whilst the stereoisomers' co-administration resulted in a worsening of the toxic (±)cis stereoisomer effects. This trend of responses was confirmed by immunohistochemical analysis on the cortex. Finally, we investigated the potentially toxic effects of stereoisomer co-administration by studying urinary excretion. The excretion study showed that the (±)trans stereoisomer reduced the metabolism of the (±)cis form and increased its amount in the urine, possibly reflecting its increased plasma levels and, therefore, the worsening of its toxicity.


Assuntos
Comportamento Animal/efeitos dos fármacos , Oxazóis/toxicidade , Transtornos Psicofisiológicos/metabolismo , Transtornos Psicofisiológicos/patologia , Psicotrópicos/toxicidade , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oxazóis/classificação , Oxazóis/urina , Transtornos Psicofisiológicos/induzido quimicamente , Psicotrópicos/classificação , Psicotrópicos/urina , Estereoisomerismo
6.
Reprod Toxicol ; 105: 101-119, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34455033

RESUMO

Prenatal and postnatal co-exposure to multiple chemicals at the same time may have deleterious effects on the developing nervous system. We previously showed that chemicals acting through similar mode of action (MoA) and grouped based on perturbation of brain derived neurotrophic factor (BDNF), induced greater neurotoxic effects on human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared to chemicals with dissimilar MoA. Here we assessed the effects of repeated dose (14 days) treatments with mixtures containing the six chemicals tested in our previous study (Bisphenol A, Chlorpyrifos, Lead(II) chloride, Methylmercury chloride, PCB138 and Valproic acid) along with 2,2'4,4'-tetrabromodiphenyl ether (BDE47), Ethanol, Vinclozolin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)), on hiPSC-derived neural stem cells undergoing differentiation toward mixed neurons/astrocytes up to 21 days. Similar MoA chemicals in mixtures caused an increase of BDNF levels and neurite outgrowth, and a decrease of synapse formation, which led to inhibition of electrical activity. Perturbations of these endpoints are described as common key events in adverse outcome pathways (AOPs) specific for DNT. When compared with mixtures tested in our previous study, adding similarly acting chemicals (BDE47 and EtOH) to the mixture resulted in a stronger downregulation of synapses. A synergistic effect on some synaptogenesis-related features (PSD95 in particular) was hypothesized upon treatment with tested mixtures, as indicated by mathematical modelling. Our findings confirm that the use of human iPSC-derived mixed neuronal/glial models applied to a battery of in vitro assays anchored to key events in DNT AOP networks, combined with mathematical modelling, is a suitable testing strategy to assess in vitro DNT induced by chemical mixtures.


Assuntos
Bioensaio , Modelos Teóricos , Síndromes Neurotóxicas , Astrócitos/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Clorpirifos/toxicidade , Etanol/toxicidade , Éteres Difenil Halogenados/toxicidade , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Chumbo/toxicidade , Compostos de Metilmercúrio/toxicidade , Células-Tronco Neurais/citologia , Neurônios/efeitos dos fármacos , Oxazóis/toxicidade , Fenóis/toxicidade , Bifenilos Policlorados/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Ácido Valproico/toxicidade
7.
Toxicology ; 460: 152842, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34182078

RESUMO

Vinclozolin (VCZ) is a fungicide with antiandrogen activity. Exposure to VCZ in maternal uterus may cause uterine, ovarian and testicular damage, hypospadias and prostate abnormality in the offspring. Hippo pathway, which is highly conservative and may be activated by miR132 and miR195a, can control organ size and tissue regeneration, and participate in injury and deformity. In the present study, VCZ was found to have caused penile malformation in the male offspring and also induced "small testis" when it was administered to the pregnant mice orally at a dose of 400 mg kg-1 day-1 on Days 12-18 of gestation. At 1, 3 and 7 weeks of age, VCZ could increase miR132, Mst1, Sav1, phosphorylated Yes-associated protein (pYap) and pLats, and decrease Yap in offspring penises and testes. Besides, it could also raise miR195a both in the testes of 1, 7-week and in the penises of all the three ages. In addition, we found the levels of some cyclin (Ccn) genes elevated in the testes, the expression of the androgen receptor (Ar) gene dereased and Jnks changed in the penises of offspring aged 1, 3 and 7 weeks. The results suggest that that gestational VCZ exposure could not only increase miR132 and miR195a in penises and testes of the offspring, but also activate Hippo pathway and down-regulate Ar. These may directly inhibit cell proliferation, accelerate cell death by up-regulating the expression of some Ccns, and ultimately lead to penile and testicular damage and malformations in the offspring.


Assuntos
MicroRNAs/biossíntese , Oxazóis/toxicidade , Pênis/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Testículo/metabolismo , Antagonistas de Androgênios/toxicidade , Animais , Feminino , Via de Sinalização Hippo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Pênis/anormalidades , Pênis/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Testículo/anormalidades , Testículo/efeitos dos fármacos
8.
Toxicol Appl Pharmacol ; 413: 115407, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33434571

RESUMO

Endocrine disrupting compounds (EDCs) are ubiquitous environmental pollutants that alter endocrine system function, induce birth defects, and a myriad of other negative health outcomes. Although the mechanism of toxicity of many EDCs have been studied in detail, little work has focused on understanding the mechanisms through which pregnant dams and fetuses protect themselves from EDCs, or if those protective mechanisms are sexually dimorphic in fetuses. In this study, we examined proteomic alterations in the livers of mouse dams and their male and female fetuses induced by vinclozolin, a model antiandrogenic EDC. Dam livers upregulated nine phase I and phase II detoxification pathways and pathway analysis revealed that more pathways are significantly enriched in dam livers than in fetal livers. Phase I and II detoxification proteins are also involved in steroid and steroid hormone biosynthesis and vinclozolin likely alters steroid levels in both the dam and the fetus. The response of the fetal liver proteome to vinclozolin exposure is sexually dimorphic. Female fetal livers upregulated proteins in xenobiotic metabolism pathways, whereas male fetal livers upregulated proteins in oxidative phosphorylation pathways. These results suggest that female fetuses increase protective mechanisms, whereas male fetuses increase ATP production and several disease pathways that are indicative of oxidative damage. Females fetuses upregulate proteins and protective pathways that were similar to the dams whereas males did not. If this sexually dimorphic pattern is typical, then males might generally be more sensitive to EDCs.


Assuntos
Antagonistas de Androgênios/toxicidade , Disruptores Endócrinos/toxicidade , Fígado/efeitos dos fármacos , Oxazóis/toxicidade , Proteoma , Trifosfato de Adenosina/metabolismo , Antagonistas de Androgênios/metabolismo , Animais , Disruptores Endócrinos/metabolismo , Feminino , Fígado/embriologia , Fígado/metabolismo , Masculino , Exposição Materna , Desentoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Camundongos , Oxazóis/metabolismo , Fosforilação Oxidativa , Gravidez , Proteômica , Caracteres Sexuais , Fatores Sexuais
9.
Pest Manag Sci ; 77(1): 177-183, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32652758

RESUMO

BACKGROUND: Herbicide safeners mitigate crop damage without reducing herbicide efficacy. Here, the protective effects of phenoxyacetyl oxazolidine derivatives as potential safeners were evaluated with a view toward reducing injury caused by sulfonylurea herbicide nicosulfuron to sensitive maize varieties. RESULTS: Growth indices demonstrated that the bioactivity of compound 9 (N-phenoxyacety-2-methyl-2,4-diethyl-1,3-oxazolidine) was superior to that of R-28725 and all other compounds tested. Compound 9 induced endogenous glutathione and upregulated glutathione-S-transferase (GST) in maize. Thus, it could enhance maize tolerance to nicosulfuron. Compared with the untreated water control group, the maximum reaction rate of GST was increased by 37.62%, while the maximum velocity of GST was decreased by 61.93% after treatment with compound 9. Acetolactate synthase relative activity was significantly enhanced in the case of treatment with compound 9, indicating the excellent protective effects of compound 9 against nicosulfuron in maize. CONCLUSIONS: The present work demonstrates that phenoxyacetyl oxazolidine derivatives are potentially efficacious as herbicide safeners and merit further investigation.


Assuntos
Herbicidas , Zea mays , Herbicidas/toxicidade , Oxazóis/toxicidade , Piridinas , Compostos de Sulfonilureia/toxicidade
10.
Int J Neurosci ; 131(6): 527-535, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32408779

RESUMO

BACKGROUND: Humanin (HN) is an extensive neuroprotective peptide. This study aims to investigate the neuroprotective effects of HN on Calyculin A (CA)-induced neurotoxicities in cortical neurons and the underlying mechanism. METHODS: CA was added into the cultured cortical neurons to induce neurotoxicity. Cortical neurons were preincubated with HN which plays a protective role. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and Calcein-AM were applied to evaluate the neural insults. Caspase 3 signal and Tunnel were performed to test neural apoptosis. Western blot analysis was used to detect the expressions of phosphorylated tau. The corresponding kits were used to measure the contents of malondialdehyde (MDA) and superoxide dismutase (SOD), and the activity of PP2A, respectively. RESULTS: HN preincubation preserved cell viability, protected the neurons, alleviated oxidative stress, and reserved PP2A activity. It also blocked tau overphosphorylation at Ser199/202, Ser396, and Thr231 sites and protected neurons against CA-induced insults. CONCLUSION: These results suggest that HN may serve as a potential therapeutic agent to prevent the pathological changes induced by CA via modulating the activity of PP2A and oxidative stress in neurodegenerative diseases.


Assuntos
Carcinógenos/toxicidade , Córtex Cerebral/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Toxinas Marinhas/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxazóis/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/efeitos dos fármacos , Proteínas tau/deficiência , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Ratos
11.
Sci Rep ; 10(1): 21529, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299084

RESUMO

The honey bee, Apis mellifera L., is the world's most important managed pollinator of agricultural crops, however, Varroa mite, Varroa destructor Anderson and Trueman, infestation has threatened honey bee survivorship. Low efficacy and development of Varroa mite resistance to currently used Varroacides has increased the demand for innovative, effective treatment tool options that exhibit high efficacy, while minimizing adverse effects on honey bee fitness. In this investigation, the toxicity of 16 active ingredients and 9 formulated products of registered miticides for use on crops from 12 chemical families were evaluated in comparison to amitraz on Varroa mites and honey bees using contact surface and topical exposures. It was found that fenpyroximate (93% mortality), spirotetramat (84% mortality) and spirodiclofen (70% mortality) had greater toxicity to Varroa mites, but high dose rates caused high bee mortality (> 60%). With this in mind, further research is needed to investigate other options to minimize the adverse effect of these compounds on bees. The results also found high toxicity of fenazaquin and etoxazole against Varroa mites causing 92% and 69% mortality, respectively; and were found to be safe on honey bees. Collectively, it is recommended that fenazaquin and etoxazole are candidates for a potential Varroacide and recommended for further testing against Varroa mites at the colony level.


Assuntos
Acaricidas/química , Abelhas/parasitologia , Varroidae/efeitos dos fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/toxicidade , Acaricidas/análise , Animais , Compostos Aza/toxicidade , Abelhas/metabolismo , Benzoatos/toxicidade , Ácaros/efeitos dos fármacos , Ácaros/metabolismo , Oxazóis/toxicidade , Pirazóis/toxicidade , Compostos de Espiro/toxicidade , Toluidinas/química , Toluidinas/farmacologia , Toluidinas/toxicidade , Varroidae/metabolismo
12.
Environ Health Perspect ; 128(11): 117005, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33236927

RESUMO

BACKGROUND: Many pesticides can antagonize the androgen receptor (AR) or inhibit androgen synthesis in vitro but their potential to cause reproductive toxicity related to disruption of androgen action during fetal life is difficult to predict. Currently no approaches for using in vitro data to anticipate such in vivo effects exist. Prioritization schemes that limit unnecessary in vivo testing are urgently needed. OBJECTIVES: The aim was to develop a quantitative in vitro to in vivo extrapolation (QIVIVE) approach for predicting in vivo anti-androgenicity arising from gestational exposures and manifesting as a shortened anogenital distance (AGD) in male rats. METHODS: We built a physiologically based pharmacokinetic (PBK) model to simulate concentrations of chemicals in the fetus resulting from maternal dosing. The predicted fetal levels were compared with analytically determined concentrations, and these were judged against in vitro active concentrations for AR antagonism and androgen synthesis suppression. RESULTS: We first evaluated our model by using in vitro and in vivo anti-androgenic data for procymidone, vinclozolin, and linuron. Our PBK model described the measured fetal concentrations of parent compounds and metabolites quite accurately (within a factor of five). We applied the model to nine current-use pesticides, all with in vitro evidence for anti-androgenicity but missing in vivo data. Seven pesticides (fludioxonil, cyprodinil, dimethomorph, imazalil, quinoxyfen, fenhexamid, o-phenylphenol) were predicted to produce a shortened AGD in male pups, whereas two (λ-cyhalothrin, pyrimethanil) were anticipated to be inactive. We tested these expectations for fludioxonil, cyprodinil, and dimethomorph and observed shortened AGD in male pups after gestational exposure. The measured fetal concentrations agreed well with PBK-modeled predictions. DISCUSSION: Our QIVIVE model newly identified fludioxonil, cyprodinil, and dimethomorph as in vivo anti-androgens. With the examples investigated, our approach shows great promise for predicting in vivo anti-androgenicity (i.e., AGD shortening) for chemicals with in vitro activity and for minimizing unnecessary in vivo testing. https://doi.org/10.1289/EHP6774.


Assuntos
Antagonistas de Androgênios/toxicidade , Genitália Masculina/anatomia & histologia , Praguicidas/toxicidade , Antagonistas de Receptores de Andrógenos/toxicidade , Animais , Compostos Bicíclicos com Pontes/toxicidade , Genitália Masculina/efeitos dos fármacos , Genitália Masculina/crescimento & desenvolvimento , Linurona/toxicidade , Masculino , Oxazóis/toxicidade , Ratos , Receptores Androgênicos/metabolismo
13.
Ecotoxicol Environ Saf ; 203: 111053, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888615

RESUMO

Vinclozolin is a common dicarboximide fungicide used to protect crops from diseases. It is also an endocrine disruptor and is thought to be related to abnormalities of the reproductive tract. However, its mechanism of inducing abnormalities of the male reproductive tract is still unclear. The purpose of this study was to study the effect of gestational vinclozolin exposure on the development of rat fetal Leydig cells. Female pregnant Sprague-Dawley rats were exposed to vinclozolin (0, 25, 50, and 100 mg/kg body weight/day) by gavage from gestational day 14-21. Vinclozolin dose-dependently reduced serum testosterone levels at doses of 50 and 100 mg/kg and the anogenital distance at 100 mg/kg. RNA-seq, qPCR, and Western blotting showed that vinclozolin down-regulated the expression of Nr5a1, Sox9, Lhcgr, Cyp11a1, Hsd3b1, Hsd17b3, Amh, Pdgfa, and Dhh and their encoded proteins. Vinclozolin reduced the number of NR2F2-positive stem Leydig cells at a dose of 100 mg/kg and enhanced autophagy in the testes. In conclusion, vinclozolin disrupts reproductive tract development and testis development in male fetal rats via several pathways.


Assuntos
Disruptores Endócrinos/toxicidade , Fungicidas Industriais/toxicidade , Organogênese/efeitos dos fármacos , Oxazóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Testículo/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Testículo/embriologia , Testículo/patologia , Testosterona/sangue
14.
Environ Res ; 190: 109975, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32827888

RESUMO

Living species including humans are continuously exposed to low levels of a myriad of endocrine active compounds that may affect their reproductive function. In contrast, experimental designs scrutinizing this question mostly consider the gestational/lactational period, select high unrealistic doses and, have rarely investigated the possible reproductive consequences in the progeny. The present study aimed at assessing comparatively a set of male reproductive endpoints according to exposure windows, gestational/lactational versus pre-pubertal to adulthood, using low doses of endocrine active substances in male rats as well as their unexposed male progeny. Animals were orally exposed to 1 mg/kg bw/d of genistein and/or vinclozolin, from conception to weaning or from prepuberty to young adulthood. A number of reproductive endpoints were assessed as well as testicular mRNA expression profiles, in the exposed rats and their unexposed progeny. Overall, the low dosage used only affected weakly most of classical reproductive endpoints. However, the gestational/lactational exposure to vinclozolin alone or combined to genistein significantly delayed the puberty onset. Contrasting with the gestational/lactational exposure, a decreased sperm production was found in the animals exposed to genistein and vinclozolin from the pre-pubertal period but also in their progeny for vinclozolin and the mixture. The expression level of several genes involved in meiosis, apoptosis and steroidogenesis was also affected differentially as a function of the exposure window in both exposed rats and unexposed offspring. We also provide further evidence that doses of endocrine active substances relevant with human exposure may affect the male reproductive phenotype and testicular transcriptome in the exposed generation as well as in the indirectly exposed offspring.


Assuntos
Genisteína , Efeitos Tardios da Exposição Pré-Natal , Adulto , Animais , Feminino , Expressão Gênica , Genisteína/toxicidade , Humanos , Masculino , Oxazóis/toxicidade , Gravidez , Ratos , Testículo , Adulto Jovem
15.
Molecules ; 25(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781534

RESUMO

A search for potent antitubercular agents prompted us to design and synthesize sulfamethaoxazole incorporated 4-thiazolidinone hybrids (7a-l) by using a cyclocondensation reaction between 4-amino-N-(5-methylisoxazol-3-yl)benzenesulfonamide (4), aryl aldehyde (5a-l), and mercapto acetic acid (6) resulting in good to excellent yields. All the newly synthesized 4-thiazolidinone derivatives were screened for their in vitro antitubercular activity against M. Bovis BCG and M. tuberculosis H37Ra (MTB) strains. The compounds 7d, 7g, 7i, 7k, and 7l revealed promising antimycobacterial activity against M. Bovis and MTB strains with IC90 values in the range of 0.058-0.22 and 0.43-5.31 µg/mL, respectively. The most active compounds were also evaluated for their cytotoxicity against MCF-7, HCT 116, and A549 cell lines and were found to be non-cytotoxic. Moreover, the synthesized compounds were also analyzed for ADME (absorption, distribution, metabolism, and excretion) properties and showed potential as good oral drug candidates.


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Oxazóis/síntese química , Oxazóis/farmacologia , Tiazolidinas/química , Antituberculosos/química , Antituberculosos/toxicidade , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Oxazóis/química , Oxazóis/toxicidade , Relação Estrutura-Atividade
16.
Elife ; 92020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32432547

RESUMO

Disruption of mitochondrial function selectively targets tumour cells that are dependent on oxidative phosphorylation. However, due to their high energy demands, cardiac cells are disproportionately targeted by mitochondrial toxins resulting in a loss of cardiac function. An analysis of the effects of mubritinib on cardiac cells showed that this drug did not inhibit HER2 as reported, but directly inhibits mitochondrial respiratory complex I, reducing cardiac-cell beat rate, with prolonged exposure resulting in cell death. We used a library of chemical variants of mubritinib and showed that modifying the 1H-1,2,3-triazole altered complex I inhibition, identifying the heterocyclic 1,3-nitrogen motif as the toxicophore. The same toxicophore is present in a second anti-cancer therapeutic carboxyamidotriazole (CAI) and we demonstrate that CAI also functions through complex I inhibition, mediated by the toxicophore. Complex I inhibition is directly linked to anti-cancer cell activity, with toxicophore modification ablating the desired effects of these compounds on cancer cell proliferation and apoptosis.


The pharmaceutical industry needs to make safe and effective drugs. At the same time this industry is under pressure to keep the costs of developing these drugs at an acceptable level. Drugs work by interacting with and typically blocking a specific target, such as a protein in a particular type of cell. Sometimes, however, drugs also bind other unexpected targets. These "off-target" effects can be the reason for a drug's toxicity, and it is important ­ both for the benefit of patients and the money that can be saved when developing drugs ­ to identify how drugs cause toxic side effects. The earlier researchers detect off-target effects, the better. Recent data has suggested that an anti-cancer drug called mubritinib has off-target effects on the compartments within cells that provide the cell with most of their energy, the mitochondria. This drug's intended target is a protein called HER2, which is found in large amounts on the surfaces of some breast cancer cells. Yet if mubritinib has this off-target effect on mitochondria, it may be harmful to other cells including heart cells because the heart is an organ that needs a large amount of energy from its mitochondria. Stephenson et al. have now performed experiments to show that mubritinib does not actually interact with HER2 at all, but only targets mitochondria. The effect of mubritinib as an anti-cancer drug is therefore only due to its activity against mitochondria. Digging deeper into the chemistry revealed the small parts of its chemical structure that was responsible for mubritinib's toxicity against heart cells, the so-called toxic substructure. Another anti-cancer drug called carboxyamidotriazole also has the same toxic substructure. Carboxyamidotriazole is supposed to stop cells from taking up calcium ions, but a final set of experiments demonstrated that this drug also only acts by inhibiting mitochondria. Often there is not enough information about many drugs' substructures, meaning off-target effects and toxicities cannot be predicted. The pharmaceutical industry will now be able to benefit from this new knowledge about the toxic substructures within some drugs. This research may also help patients who take mubritinib or carboxyamidotriazole, because their doctors will have to check for side effects on the heart more carefully.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Oxazóis/farmacologia , Triazóis/farmacologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Morte Celular , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Miócitos Cardíacos , Oxazóis/química , Oxazóis/toxicidade , Fosforilação Oxidativa , Ligação Proteica , Receptor ErbB-2 , Triazóis/química , Triazóis/toxicidade
17.
Toxicol Mech Methods ; 30(5): 370-377, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32208804

RESUMO

Background: Vinclozolin (VCZ) is a widely used antifungal agent with capability to enter into the human food chain. VCZ metabolizes into seven metabolites M1-M7. Several studies have shown its effects on reprotoxicity. However, there is limited information available on the interaction of VCZ metabolites with nuclear receptors. In silico studies aimed at identifying interaction of endocrine disruptor with nuclear receptors serve a prescreening framework in risk assessment.Methods: We studied interactive potential of VCZ and its metabolites with human estrogen (ER) and androgen receptor (AR) using molecular docking method. Binding potential of VCZ and its metabolites with estrogen receptors 1GWR-α, 1QKM and androgen receptor 2AM9-ß was checked by using Schrodinger Maestro 10.5. Estradiol (E2), a natural ligand of ER and AR was taken as a reference.Results: VCZ and its metabolites showed higher or similar binding efficiency on interaction with target proteins when compared with E2. VCZ and its metabolites also exhibited agonistic effect against 1GWR-α, 1QKM and 2AM9-ß with strong binding potential to them.Conclusion: Some VCZ metabolites such as M4 and M5 showed higher binding potencies with 1GWR-α, 1QKM and 2AM9-ß than E2. Toxicity data of VCZ is well endowed. However, endocrine disrupting potential of VCZ via nuclear receptor mediated pathway is less understood. This in silico study revealing that not only VCZ but its metabolites have potential to interact with 1GWR-α, 1QKM and 2AM9-ß offers a platform for further exploration of VCZ in this direction.


Assuntos
Disruptores Endócrinos/química , Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio/química , Oxazóis/química , Oxazóis/toxicidade , Receptores Androgênicos/química , Sítios de Ligação , Ligação Competitiva , Cristalografia por Raios X , Disruptores Endócrinos/metabolismo , Receptor alfa de Estrogênio/metabolismo , Humanos , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Oxazóis/metabolismo , Ligação Proteica , Receptores Androgênicos/metabolismo
18.
Ecotoxicol Environ Saf ; 192: 110287, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32036102

RESUMO

An environmentally-friendly and fast analytical method for the stereoselective determination of etoxazole was developed and then applied to estimate stereoselective bioaccumulation and elimination in zebrafish using SFC-MS/MS. Optimal enantioseparation conditions were determined using a Chiralpak IG-3 column and CO2/MeOH mobile phase (80/20, v/v), at 3.0 mL/min within 1 min, 30°Me and 18 MPa. A modified QuEChERS method was developed for zebrafish sample pretreatment, and mean recoveries were 88.43-110.12% with relative standard deviations ranging from 0.32 to 5.34%. The enantioselectives of etoxazole enantiomers in zebrafish during uptake and depuration phases were evaluated. Significant enantioselective bioaccumulation was observed, with preferential accumulation of (-)-R-etoxazole compared to its antipode, during uptake at both low and high exposure concentrations. The toxic effects of etoxazole on zebrafish were further explored, and activities of antioxidant enzymes were determined in liver of zebrafish. Significant changes were observed in the SOD and GST activities and in the MDA levels, which indicated the occurrence of oxidative stress in liver of zebrafish. The toxic effects exhibited time- and dose-dependent properties. These results can facilitate the accurate risk evaluation of etoxazole and provide basic knowledge for further study of biotoxicity mechanisms.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Oxazóis/química , Oxazóis/toxicidade , Estresse Oxidativo , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/química , Animais , Antioxidantes/metabolismo , Bioacumulação , Fígado/efeitos dos fármacos , Fígado/enzimologia , Oxazóis/análise , Oxazóis/farmacocinética , Estereoisomerismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
19.
Dev Biol ; 458(1): 106-119, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682807

RESUMO

Epigenetic transgenerational inheritance potentially impacts disease etiology, phenotypic variation, and evolution. An increasing number of environmental factors from nutrition to toxicants have been shown to promote the epigenetic transgenerational inheritance of disease. Previous observations have demonstrated that the agricultural fungicide vinclozolin and pesticide DDT (dichlorodiphenyltrichloroethane) induce transgenerational sperm epimutations involving DNA methylation, ncRNA, and histone modifications or retention. These two environmental toxicants were used to investigate the impacts of parent-of-origin outcross on the epigenetic transgenerational inheritance of disease. Male and female rats were collected from a paternal outcross (POC) or a maternal outcross (MOC) F4 generation control and exposure lineages for pathology and epigenetic analysis. This model allows the parental allelic transmission of disease and epimutations to be investigated. There was increased pathology incidence in the MOC F4 generation male prostate, kidney, obesity, and multiple diseases through a maternal allelic transmission. The POC F4 generation female offspring had increased pathology incidence for kidney, obesity and multiple types of diseases through the paternal allelic transmission. Some disease such as testis or ovarian pathology appear to be transmitted through the combined actions of both male and female alleles. Analysis of the F4 generation sperm epigenomes identified differential DNA methylated regions (DMRs) in a genome-wide analysis. Observations demonstrate that DDT and vinclozolin have the potential to promote the epigenetic transgenerational inheritance of disease and sperm epimutations to the outcross F4 generation in a sex specific and exposure specific manner. The parent-of-origin allelic transmission observed appears similar to the process involved with imprinted-like genes.


Assuntos
DDT/toxicidade , Epigênese Genética/genética , Fungicidas Industriais/toxicidade , Doenças dos Genitais Masculinos/genética , Impressão Genômica/genética , Mutação em Linhagem Germinativa , Doenças Renais Císticas/genética , Obesidade/genética , Oxazóis/toxicidade , Praguicidas/toxicidade , Espermatozoides/química , Adipócitos/patologia , Alelos , Animais , Cruzamentos Genéticos , Metilação de DNA , Feminino , Doenças dos Genitais Masculinos/patologia , Código das Histonas , Doenças Renais Císticas/patologia , Masculino , Obesidade/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , RNA não Traduzido/genética , Ratos , Ratos Sprague-Dawley
20.
Environ Pollut ; 257: 113480, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31744678

RESUMO

Etoxazole is an organofluorine insecticide widely used in agriculture. Exposure to insecticides is a serious environmental problem owing to their cytotoxic effects in humans and animals. Reproductive toxicity of various organofluorine insecticides have been shown in previous studies. However, few studies have evaluated the toxicity of etoxazole in mammals. We aimed to examine the toxic effects of etoxazole in porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells. To estimate the effects of etoxazole, we conducted assays after treatment with multiple concentration of etoxazole (0, 2, 4, 6 and 9 µM) to pTr and pLE cells for 0-72 h. Etoxazole decreased the cell proliferation, viability, and migration of pTr and pLE cells. Further, etoxazole induced apoptosis via cell cycle arrest and disruption of mitochondrial membrane potential. We also found that pro-apoptotic proteins and endoplasmic reticulum (ER) stress-response proteins were activated in response to etoxazole. Finally, we observed that etoxazole altered the PI3K/AKT and MAPK signaling pathways and the mRNA expression of genes associated with implantation. Collectively, these results suggest that etoxazole disrupts normal cellular physiology and might cause early implantation failure.


Assuntos
Acaricidas/toxicidade , Oxazóis/toxicidade , Animais , Apoptose/efeitos dos fármacos , Morte Celular , Proliferação de Células/efeitos dos fármacos , Implantação do Embrião/efeitos dos fármacos , Estresse do Retículo Endoplasmático , Células Epiteliais/efeitos dos fármacos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Suínos , Útero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...